Как найти синус тупоугольного треугольника

Синус тупого угла

Выразим синус тупого угла от 90 до 180 градусов через синус острого угла (от 0º до 90º).

Как найти синус тупоугольного треугольника

При повороте против часовой стрелки на острый угол альфа на единичной окружности отметив точку A (x;y), при повороте на тупой угол 180º- α — точку C.

Из точек A и C опустим перпендикуляры AB и CD на ось Ox.

В прямоугольных треугольниках AOB и COD:

1) AO=CO (как радиусы);

2) ∠AOB=∠COD=α (по построению).

Из равенства треугольников следует равенство соответствующих сторон:

Синусом угла альфа на единичной окружности называется ордината точки, полученной из точки P при повороте вокруг точки O на угол альфа.

Ордината точки A равна y, поэтому

Как найти синус тупоугольного треугольника

По доказанному, ордината точки С также равна y, поэтому

Как найти синус тупоугольного треугольника

Как найти синус тупоугольного треугольника

Это — одна из формул приведения. Все формулы приведения рассматриваются в курсе алгебры 10 класса.

Таким образом, синус тупого угла 180º- α равен синусу острого угла α.

Видео:Синус, косинус, тангенс, котангенс за 5 МИНУТСкачать

Синус, косинус, тангенс, котангенс за 5 МИНУТ

Теорема синусов

Как найти синус тупоугольного треугольника

О чем эта статья:

Статья находится на проверке у методистов Skysmart.
Если вы заметили ошибку, сообщите об этом в онлайн-чат
(в правом нижнем углу экрана).

Видео:ТЕОРЕМА СИНУСОВ И ТЕОРЕМА КОСИНУСОВ. Тригонометрия | МатематикаСкачать

ТЕОРЕМА СИНУСОВ И ТЕОРЕМА КОСИНУСОВ. Тригонометрия | Математика

Доказательство теоремы синусов

Теорема синусов звучит так: стороны треугольника пропорциональны синусам противолежащих углов.

Нарисуем стандартный треугольник и запишем теорему формулой:

Как найти синус тупоугольного треугольника

Формула теоремы синусов:

Как найти синус тупоугольного треугольника

Докажем теорему с помощью формулы площади треугольника через синус его угла.

Как найти синус тупоугольного треугольника

Из этой формулы мы получаем два соотношения:


    Как найти синус тупоугольного треугольника

Как найти синус тупоугольного треугольника
На b сокращаем, синусы переносим в знаменатели:
Как найти синус тупоугольного треугольника

  • Как найти синус тупоугольного треугольника
    bc sinα = ca sinβ
    Как найти синус тупоугольного треугольника
  • Из этих двух соотношений получаем:

    Как найти синус тупоугольного треугольника

    Теорема синусов для треугольника доказана.

    Эта теорема пригодится, чтобы найти:

    • Стороны треугольника, если даны два угла и одна сторона.
    • Углы треугольника, если даны две стороны и один прилежащий угол.

    Видео:ТРИГОНОМЕТРИЯ | Синус, Косинус, Тангенс, КотангенсСкачать

    ТРИГОНОМЕТРИЯ | Синус, Косинус, Тангенс, Котангенс

    Доказательство следствия из теоремы синусов

    У теоремы синусов есть важное следствие. Нарисуем треугольник, опишем вокруг него окружность и рассмотрим следствие через радиус.

    Как найти синус тупоугольного треугольника

    Как найти синус тупоугольного треугольника

    где R — радиус описанной около треугольника окружности.

    Так образовались три формулы радиуса описанной окружности:

    Как найти синус тупоугольного треугольника

    Основной смысл следствия из теоремы синусов заключен в этой формуле:

    Как найти синус тупоугольного треугольника

    Радиус описанной окружности не зависит от углов α, β, γ. Удвоенный радиус описанной окружности равен отношению стороны треугольника к синусу противолежащего угла.

    Для доказательства следствия теоремы синусов рассмотрим три случая.

    1. Угол ∠А = α — острый в треугольнике АВС.

    Как найти синус тупоугольного треугольника

    Проведем диаметр BA1. В этом случае точка А и точка А1 лежат в одной полуплоскости от прямой ВС.

    Используем теорему о вписанном угле и видим, что ∠А = ∠А1 = α. Треугольник BA1C — прямоугольный, в нём ∠ BCA1 = 90°, так как он опирается на диаметр BA1.

    Чтобы найти катет a в треугольнике BA1C, нужно умножить гипотенузу BA1 на синус противолежащего угла.

    BA1 = 2R, где R — радиус окружности

    Следовательно: R = α/2 sinα

    Для острого треугольника с описанной окружностью теорема доказана.

    2. Угол ∠А = α — тупой в треугольнике АВС.

    Проведем диаметр окружности BA1. Точки А и A1 по разные стороны от прямой ВС. Четырёхугольник ACA1B вписан в окружность, и его основное свойство в том, что сумма противолежащих углов равна 180°.

    Следовательно, ∠А1 = 180° — α.

    Как найти синус тупоугольного треугольника

    Вспомним свойство вписанного в окружность четырёхугольника:

    Как найти синус тупоугольного треугольника

    Также известно, что sin(180° — α) = sinα.

    В треугольнике BCA1 угол при вершине С равен 90°, потому что он опирается на диаметр. Следовательно, катет а мы находим таким образом:

    α = 2R sin (180° — α) = 2R sinα

    Следовательно: R = α/2 sinα

    Для тупого треугольника с описанной окружностью теорема доказана.

    Часто используемые тупые углы:

    • sin120° = sin(180° — 60°) = sin60° = 3/√2;
    • sin150° = sin(180° — 30°) = sin30° = 1/2;
    • sin135° = sin(180° — 45°) = sin45° = 2/√2.

    3. Угол ∠А = 90°.

    Как найти синус тупоугольного треугольника

    В прямоугольнике АВС угол А прямой, а противоположная сторона BC = α = 2R, где R — это радиус описанной окружности.

    Как найти синус тупоугольного треугольника

    Для прямоугольного треугольника с описанной окружностью теорема доказана.

    Для тех, кто хочет связать свою жизнь с точными науками, Skysmart предлагает курсы по профильной математике.

    Видео:Синус, косинус, тангенс ТУПОГО угла | Твой самый халявний балл на ОГЭ 2023!Скачать

    Синус, косинус, тангенс ТУПОГО угла | Твой самый халявний балл на ОГЭ 2023!

    Теорема о вписанном в окружность угле

    Из теоремы синусов и ее следствия можно сделать любопытный вывод: если известна одна сторона треугольника и синус противолежащего угла — можно найти и радиус описанной окружности. Но треугольник не задаётся только этими величинами. Это значит, что если треугольник еще не задан, найти радиус описанной окружности возможно.

    Раскроем эту тему на примере теоремы о вписанном в окружность угле и следствиях из нее.

    Теорема о вписанном угле: вписанный в окружность угол измеряется половиной дуги, на которую он опирается.

    Как найти синус тупоугольного треугольника

    ∠А = α опирается на дугу ВС. Дуга ВС содержит столько же градусов, сколько ее центральный угол ∠BOC.

    Формула теоремы о вписанном угле:

    Как найти синус тупоугольного треугольника

    Следствие 1 из теоремы о вписанном в окружность угле

    Вписанные углы, опирающиеся на одну дугу, равны.

    Как найти синус тупоугольного треугольника

    ∠А = ∠BAC опирается на дугу ВС. Поэтому ∠A = 1/2(∠COB).

    Если мы возьмём точки A1, А2. Аn и проведём от них лучи, которые опираются на одну и ту же дугу, то получим:

    Как найти синус тупоугольного треугольника

    На рисунке изображено множество треугольников, у которых есть общая сторона СВ и одинаковый противолежащий угол. Треугольники являются подобными, и их объединяет одинаковый радиус описанной окружности.

    Следствие 2 из теоремы о вписанном в окружность угле

    Вписанные углы, которые опираются на диаметр, равны 90°, то есть прямые.

    Как найти синус тупоугольного треугольника

    ВС — диаметр описанной окружности, следовательно ∠COB = 180°.

    Как найти синус тупоугольного треугольника

    Следствие 3 из теоремы о вписанном в окружность угле

    Сумма противоположных углов вписанного в окружность четырёхугольника равна 180°. Это значит, что:

    Как найти синус тупоугольного треугольника

    Угол ∠А = α опирается на дугу DCB. Поэтому DCB = 2α по теореме о вписанном угле.

    Угол ∠С = γ опирается на дугу DAB. Поэтому DAB = 2γ.

    Но так как 2α и 2γ — это вся окружность, то 2α + 2γ = 360°.

    Следовательно: α + γ = 180°.

    Поэтому: ∠A + ∠C = 180°.

    Следствие 4 из теоремы о вписанном в окружность угле

    Синусы противоположных углов вписанного четырехугольника равны. То есть:

    sinγ = sin(180° — α)

    Так как sin(180° — α) = sinα, то sinγ = sin(180° — α) = sinα

    Видео:Нахождение косинуса и синуса угла в прямоугольном треугольникеСкачать

    Нахождение косинуса и синуса угла в прямоугольном треугольнике

    Примеры решения задач

    Теорема синусов и следствия из неё активно используются при решении задач. Рассмотрим несколько примеров, чтобы закрепить материал.

    Пример 1. В треугольнике ABC ∠A = 45°,∠C = 15°, BC = 4√6. Найти AC.

      Согласно теореме о сумме углов треугольника:

    ∠B = 180° — 45° — 15° = 120°

  • Сторону AC найдем по теореме синусов:
    Как найти синус тупоугольного треугольника
  • Пример 2. Гипотенуза и один из катетов прямоугольного треугольника равны 10 и 8 см. Найти угол, который расположен напротив данного катета.

    В этой статье мы узнали, что в прямоугольном треугольнике напротив гипотенузы располагается угол, равный 90°. Примем неизвестный угол за x. Тогда соотношение сторон выглядит так:

    Как найти синус тупоугольного треугольника

    Как найти синус тупоугольного треугольника

    Значит x = sin (4/5) ≈ 53,1°.

    Ответ: угол составляет примерно 53,1°.

    Видео:Нахождение стороны прямоугольного треугольникаСкачать

    Нахождение стороны прямоугольного треугольника

    Запоминаем

    Обычная теорема: стороны треугольника пропорциональны синусам противолежащих углов.

    >
    Как найти синус тупоугольного треугольника

    Расширенная теорема: в произвольном треугольнике справедливо следующее соотношение:

    Видео:ТРИГОНОМЕТРИЯ с нуля — Синус, косинус, тангенс и котангенс острого углаСкачать

    ТРИГОНОМЕТРИЯ с нуля — Синус, косинус, тангенс и котангенс острого угла

    Синус угла. Таблица синусов.

    Видео:8 класс, 29 урок, Синус, косинус и тангенс острого угла прямоугольного треугольникаСкачать

    8 класс, 29 урок, Синус, косинус и тангенс острого угла прямоугольного треугольника

    Синус угла через градусы, минуты и секунды

    Видео:СИНУС И КОСИНУС ЛЮБЫХ УГЛОВ | ТригонометрияСкачать

    СИНУС И КОСИНУС ЛЮБЫХ УГЛОВ | Тригонометрия

    Синус угла через десятичную запись угла

    Видео:Что такое синус, косинус и тангенс угла в прямоугольном треугольнике. Часть 1Скачать

    Что такое синус, косинус и тангенс угла в прямоугольном треугольнике. Часть 1

    Как найти угол зная синус этого угла

    У синуса есть обратная тригонометрическая функция — arcsin(y)=x

    Пример sin(30°) = 1/2; arcsin(1/2) = 30°

    Видео:По силам каждому ★ Найдите стороны треугольника на рисункеСкачать

    По силам каждому ★ Найдите стороны треугольника на рисунке

    Определение синуса

    Синусом острого угла прямоугольного треугольника называется отношение противолежащего катета к гипотенузе.

    Синусом угла α называется ордината точки B единичной окружности, полученной при повороте точки P(1;0) на угол α.

    Как найти синус тупоугольного треугольника

    Видео:Урок СИНУС, КОСИНУС И ТАНГЕНС ОСТРОГО УГЛА ПРЯМОУГОЛЬНОГО ТРЕУГОЛЬНИКАСкачать

    Урок СИНУС, КОСИНУС И ТАНГЕНС ОСТРОГО УГЛА ПРЯМОУГОЛЬНОГО ТРЕУГОЛЬНИКА

    Периодичность синуса

    Функция y = sin(x) периодична, с периодом 2π

    📹 Видео

    Тригонометрия: Как запомнить? + ПОЛУЧИ ПОДАРОК от Ольги АлександровныСкачать

    Тригонометрия: Как запомнить? + ПОЛУЧИ ПОДАРОК от Ольги Александровны

    Супер ЖЕСТЬ ➜ Найдите сторону треугольника ➜ Решить без тригонометрииСкачать

    Супер ЖЕСТЬ ➜ Найдите сторону треугольника ➜ Решить без тригонометрии

    Геометрия 8 класс (Урок№21 - Косинус, синус и тангенс острого угла прямоугольного треугольника.)Скачать

    Геометрия 8 класс (Урок№21 - Косинус, синус и тангенс острого угла прямоугольного треугольника.)

    Синус наименьшего угла. Задание 15 ОГЭСкачать

    Синус наименьшего угла. Задание 15 ОГЭ

    Решение прямоугольных треугольниковСкачать

    Решение прямоугольных треугольников

    Геометрия 8. Урок 11- Синус, Косинус, Тангенс и Котангенс угла в прямоугольном треугольнике.Скачать

    Геометрия 8. Урок 11- Синус, Косинус, Тангенс и Котангенс угла в прямоугольном треугольнике.

    Синус, косинус произвольного угла. 9 класс.Скачать

    Синус, косинус произвольного угла. 9 класс.

    Теорема косинусов. Решить задачи. Найти сторону по двум сторонам и углу. Найти угол по сторонам.Скачать

    Теорема косинусов. Решить задачи. Найти сторону по двум сторонам и углу. Найти угол по сторонам.
    Поделиться или сохранить к себе: