Как найти середины сторон треугольника

Что такое средняя линия треугольника

В данной публикации мы рассмотрим определение, свойства и признак средней линии треугольника, а также разберем пример решения задачи для лучшего понимания теоретического материала.

Видео:Уравнения стороны треугольника и медианыСкачать

Уравнения стороны треугольника и медианы

Определение средней линии треугольника

Отрезок, который соединяет середины двух сторон треугольника, называется его средней линией.

Как найти середины сторон треугольника

  • KL – средняя линия треугольника ABC
  • K – середина стороны AB: AK = KB
  • L – середина стороны BC: BL = LC

Видео:№101. Начертите треугольник. С помощью масштабной линейки отметьте середины сторон и проведитеСкачать

№101. Начертите треугольник. С помощью масштабной линейки отметьте середины сторон и проведите

Свойства средней линии треугольника

Свойство 1

Средняя линия треугольника параллельна одной из его сторон (которую не пересекает) и в два раза меньше этой стороны.

На рисунке выше:

Свойство 2

Средняя линия треугольника отсекает от него подобный треугольник (в соотношении 1:2), площадь которого в 4 раза меньше исходного.

На рисунке выше:

  • △KBL ∼ △ABC (подобие по пропорциональности всех сторон)
  • Стороны △KBL в два раза меньше соответствующих сторон △ABC:
    AB = 2KB, BC = 2BL, AC = 2KL
    .
  • S△ABC = 4 ⋅ S△KBL

Свойство 3

В любом треугольнике можно провести три средние линии.

Как найти середины сторон треугольника

KL, KM и ML – средние линии треугольника ABC.

Свойство 4

Три средние линии треугольника делят его на 4 равных по площади треугольника.

Как найти середины сторон треугольника

Видео:Координаты середины отрезкаСкачать

Координаты середины отрезка

Признак средней линии треугольника

Отрезок, проходящий через середину одной из сторон треугольника, пресекающий вторую и параллельный третьей стороне, является средней линией этого треугольника.

Видео:№566. Точки Р и Q — середины сторон АВ и АС треугольника ABC. Найдите периметр треугольникаСкачать

№566. Точки Р и Q — середины сторон АВ и АС треугольника ABC. Найдите периметр треугольника

Пример задачи

Дан треугольник, две стороны которого равны 6 и 8 см. Найдите длину средней линии, соединяющей эти стороны.

Треугольник с заданными сторонами является прямоугольным, причем известные значения – это длины катетов. Средняя линия, которая соединяет катеты, параллельна гипотенузе и равна половине ее длины.

Как найти середины сторон треугольника

Мы можем найти гипотенузу, воспользовавшись теоремой Пифагора.

BC 2 = AB 2 + AC 2 = 6 2 + 8 2 = 100.
BC = 10.

Таким образом, средняя линия LM = 1 /2 ⋅ BC = 1 /2 ⋅ 10 = 5.

Видео:№768. Точки М и N — середины сторон АВ и АС треугольника ABC. Выразите векторыСкачать

№768. Точки М и N — середины сторон АВ и АС треугольника ABC. Выразите векторы

Как найти среднюю линию треугольника?

Как найти середины сторон треугольника

О чем эта статья:

Статья находится на проверке у методистов Skysmart.
Если вы заметили ошибку, сообщите об этом в онлайн-чат (в правом нижнем углу экрана).

Видео:Средняя линия. Теорема о средней линии треугольникаСкачать

Средняя линия. Теорема о средней линии треугольника

Понятие треугольника

Треугольник — это геометрическая фигура, которая получилась из трех отрезков. Их соединили тремя точками, которые не лежат на одной прямой. Отрезки принято называть сторонами, а точки — вершинами.

  • Прямоугольный. Один угол прямой, то есть равен 90 градусам, два других меньше 90 градусов.
  • Остроугольный. Градусная мера всех углов больше 0, но меньше 90 градусов.
  • Тупоугольный. Один угол тупой, два других — острые.

Как найти середины сторон треугольника

Треугольник считают равнобедренным, если две его стороны равны. Эти стороны называют боковыми сторонами, а третью — основанием.

Треугольник, у которого все стороны равны, называется равносторонним или правильным.

Треугольник называется прямоугольным, если у него есть прямой угол, то есть угол в 90°. Сторона прямоугольного треугольника, которая лежит напротив прямого угла — гипотенуза, а две другие стороны — катеты.

Правильный (равносторонний или равноугольный) треугольник — это правильный многоугольник, в котором все стороны равны между собой, все углы также равны и составляют 60°. В равностороннем треугольнике высота является и биссектрисой, и медианой.

Свойства треугольников:

  • В треугольнике против большего угла лежит большая сторона — и наоборот.
  • Сумма углов треугольника равна 180 градусов.
  • Все углы равностороннего треугольника равны 60 градусам.
  • В прямоугольном треугольнике квадрат гипотенузы равен сумме квадратов катетов.

Нужно быстро привести знания в порядок перед экзаменом? Записывайтесь на курсы ЕГЭ по математике в Skysmart!

Видео:По силам каждому ★ Найдите стороны треугольника на рисункеСкачать

По силам каждому ★ Найдите стороны треугольника на рисунке

Понятие средней линии треугольника

Определение средней линии треугольника подходит для любого вида этой фигуры.

​Средняя линия треугольника — отрезок, который соединяет середины двух сторон. В любом треугольнике можно провести три средних линии.

​Основанием считается сторона, которой параллельна средняя линия.

Как найти среднюю линию треугольника — расскажем дальше, а для начала еще немного разберемся со всеми определениями.

Видео:Найдите третью сторону треугольникаСкачать

Найдите третью сторону треугольника

Понятие средней линии прямоугольного треугольника

Математики говорят: в любом треугольнике можно провести три средних линии. В прямоугольном треугольнике этот отрезок будет равен половине основания — это и есть формула средней линии прямоугольного треугольника.

Как найти середины сторон треугольника

Прямой угол помогает нам применить другие признаки равенства и подобия. Для углов в прямоугольном треугольнике можно использовать геометрические тождества без дополнительных построений, а любую из сторон можно найти по теореме Пифагора.

В прямоугольном треугольнике две средние линии перпендикулярны катетам, а третья равна медиане, проведенной к гипотенузе. Средние линии острого и разностороннего треугольника не обладают подобными свойствами.

Видео:Координаты середины отрезка. Практическая часть. 11 класс.Скачать

Координаты середины отрезка. Практическая часть. 11 класс.

Свойства средней линии треугольника

Признак средней линии треугольника: если отрезок в треугольнике проходит через середину одной из его сторон, пересекает вторую и параллелен третьей — этот отрезок можно назвать средней линией этого треугольника.

Свойства:

  1. Средняя линия равна половине длины основания и параллельна ему.
  2. Средняя линия отсекает треугольник, подобный данному с коэффициентом 1/2; его площадь равна четверти площади данного.
  3. Три средние линии разделяют исходную фигуру на четыре равных треугольника. Центральный из них называют дополнительным.
  4. Три средние линии разделяют исходный прямоугольный треугольник на четыре равных прямоугольных треугольника.

Видео:В треугольнике отмечены середины M и N сторон BC и AC ... | ОГЭ 2017 | ЗАДАНИЕ 12 | ШКОЛА ПИФАГОРАСкачать

В треугольнике отмечены середины M и N сторон BC и AC ... | ОГЭ 2017 | ЗАДАНИЕ 12 | ШКОЛА ПИФАГОРА

Теорема о средней линии треугольника

Теорема о средней линии треугольника звучит так:

Средняя линия треугольника параллельна основанию и равна его половине. А так выглядит формула нахождения средней линии треугольника:

Как найти середины сторон треугольника

Докажем теорему:

По условию нам дано, что MA = MB, NA = NC

Как найти середины сторон треугольника

Рассмотрим два образовавшихся треугольника ΔAMN и ΔABC.

Как найти середины сторон треугольника(по второму признаку подобия треугольников).

△ABC, то Как найти середины сторон треугольникаСледовательно, ВС = 2МN. Значит, доказано, что средняя линия равна половине основания.

△ABC, то ∠1 = ∠2 . Так как ∠1 и ∠2 — соответственные углы, то по признаку параллельности прямых MN || BC.

Параллельность средней линии и соответствующего ей основания доказана.

Пример 1. В треугольнике ΔABC AB = 8, BC = 7, CA = 5, точки M, K, N — середины сторон AB, BC, CA соответственно. Найти периметр ΔMNK.

Как найти середины сторон треугольника

Соединим середины сторон треугольника ΔABC и получим его средние линии, которые образуют треугольник ΔMNK. Найдем их длины по теореме о средней линии:

Как найти середины сторон треугольника

Ответ: периметр треугольника ΔMNK равен 10.

Пример 2. В прямоугольном треугольнике АВС есть две средние линии: MN и NP, равные 3 и 4 соответственно. Найти площадь большого прямоугольного треугольника.

Как найти середины сторон треугольника

Площадь треугольника равна половине произведения основания на высоту. Так как треугольник прямоугольный, то его площадь найдем как половину произведения катетов:

Так как MN — средняя линия, то по теореме о средней линии она равна половине катета AC:

Значит, AC = 2MN = 2 × 3 = 6.

Так как NP — средняя линия, то по теореме о средней линии она равна половине катета BC:

Значит, BC = 2NP = 2 × 4 = 8.

Тогда найдем площадь большого треугольника, используя формулу, указанную выше:

S = ½ × 6 × 8 = ½ × 48 = 24.

Ответ: площадь большого прямоугольного треугольника равна 24.

Видео:Найдите сторону треугольника, если другие его стороны равны 1 и 5Скачать

Найдите сторону треугольника, если другие его стороны равны 1 и 5

Средняя линия треугольника

Что такое средняя линия треугольника?

Каковы свойства средней линии треугольника?

Сколько средних линий в треугольнике?

Средняя линия треугольника — это отрезок, соединяющий середины двух его сторон.

Как найти середины сторон треугольникаM — середина AB,

MN — средняя линия треугольника ABC.

Поскольку в треугольнике три стороны, треугольник имеет три средние линии.

Как найти середины сторон треугольника

MN, MP, PN — средние линии треугольника ABC.

Теорема (Свойства средней линии треугольника).

Средняя линия треугольника, соединяющая середины двух данных сторон, параллельна третьей стороне и равна ее половине:

Как найти середины сторон треугольника

Как найти середины сторон треугольника

Стороны треугольника равны a, b, c. Найти стороны и периметр треугольника, вершинами которого являются середины сторон данного треугольника.

Как найти середины сторон треугольникаДано: ∆ ABC, AB=c, BC=a, AC=b,

M — середина AB, N — середина BC,

Найти: MN, PN, MP, P(∆ ABC).

Так как точки M, N и P являются серединами сторон треугольника ABC, то отрезки MN, PN и MP- средние линии этого треугольника (по определению).

По свойству средней линии треугольника

Как найти середины сторон треугольника

Как найти середины сторон треугольника

Как найти середины сторон треугольника

Как найти середины сторон треугольника

Как найти середины сторон треугольника

Как найти середины сторон треугольника

Как найти середины сторон треугольника

то есть периметр треугольника, вершинами которого являются середины сторон данного треугольника, равен половине периметра данного треугольника.

🎦 Видео

Средняя линия треугольника и трапеции. 8 класс.Скачать

Средняя линия треугольника и трапеции. 8 класс.

№564. Дан треугольник, стороны которого равны 8 см, 5 см и 7 см. Найдите периметр треугольника,Скачать

№564. Дан треугольник, стороны которого равны 8 см, 5 см и 7 см. Найдите периметр треугольника,

Найдите стороны треугольникаСкачать

Найдите стороны треугольника

ТЕОРЕМА СИНУСОВ И ТЕОРЕМА КОСИНУСОВ. Тригонометрия | МатематикаСкачать

ТЕОРЕМА СИНУСОВ И ТЕОРЕМА КОСИНУСОВ. Тригонометрия | Математика

Нахождение стороны прямоугольного треугольникаСкачать

Нахождение стороны прямоугольного треугольника

№163. Докажите, что середины сторон равнобедренного треугольника являются вершинами другого равнобедСкачать

№163. Докажите, что середины сторон равнобедренного треугольника являются вершинами другого равнобед

Метод координат. Как найти медиану треугольника, если известны координаты его вершин?Скачать

Метод координат. Как найти медиану треугольника, если известны координаты его вершин?

Расстояние между двумя точками. Координаты середины отрезка.Скачать

Расстояние между двумя точками. Координаты середины отрезка.

8 класс, 25 урок, Средняя линия треугольникаСкачать

8 класс, 25 урок, Средняя линия треугольника
Поделиться или сохранить к себе: