Как найти координаты середины треугольника

Как найти координаты середины треугольника

Даны координаты середин сторон треугольника: E(7, 8); F(-4, 5); K(1, -4). Определить координаты вершин треугольника.

пусть точки A, B и C — вершины треугольника, точка E — середина стороны AB, точка F — середина стороны AC, а K — середина стороны BC. Требуется найти координаты точек A, B и C.

Как найти координаты середины треугольникаКак найти координаты середины треугольникаКак найти координаты середины треугольникаКак найти координаты середины треугольникаКак найти координаты середины треугольникаКак найти координаты середины треугольникаКак найти координаты середины треугольника

Как найти координаты середины треугольникаКак найти координаты середины треугольникаКак найти координаты середины треугольникаКак найти координаты середины треугольникаКак найти координаты середины треугольникаКак найти координаты середины треугольникаКак найти координаты середины треугольника Как найти координаты середины треугольника(1)

Как найти координаты середины треугольникаКак найти координаты середины треугольникаКак найти координаты середины треугольникаКак найти координаты середины треугольникаКак найти координаты середины треугольникаКак найти координаты середины треугольникаКак найти координаты середины треугольника Как найти координаты середины треугольника(2)

Как найти координаты середины треугольникаКак найти координаты середины треугольникаКак найти координаты середины треугольникаКак найти координаты середины треугольникаКак найти координаты середины треугольникаКак найти координаты середины треугольникаКак найти координаты середины треугольника Как найти координаты середины треугольника(3)

Подставляя в эти формулы координаты точек E, F и K, мы для определения неизвестных получим следующие уравнения:

а) Уравнения, отмеченные (1), после подстановки в них координат точки E запишутся так:

Видео:Координаты середины отрезкаСкачать

Координаты середины отрезка

Нахождение координат середины отрезка: примеры, решения

В статье ниже будут освещены вопросы нахождения координат середины отрезка при наличии в качестве исходных данных координат его крайних точек. Но, прежде чем приступить к изучению вопроса, введем ряд определений.

Отрезок – прямая линия, соединяющая две произвольные точки, называемые концами отрезка. В качестве примера пусть это будут точки A и B и соответственно отрезок A B .

Если отрезок A B продолжить в обе стороны от точек A и B , мы получим прямую A B . Тогда отрезок A B – часть полученной прямой, ограниченный точками A и B . Отрезок A B объединяет точки A и B , являющиеся его концами, а также множество точек, лежащих между. Если, к примеру, взять любую произвольную точку K , лежащую между точками A и B , можно сказать, что точка K лежит на отрезке A B .

Длина отрезка – расстояние между концами отрезка при заданном масштабе (отрезке единичной длины). Длину отрезка A B обозначим следующим образом: A B .

Середина отрезка – точка, лежащая на отрезке и равноудаленная от его концов. Если середину отрезка A B обозначить точкой C , то верным будет равенство: A C = C B

И далее мы рассмотрим, как же определять координаты середины отрезка (точки C ) при заданных координатах концов отрезка ( A и B ), расположенных на координатной прямой или в прямоугольной системе координат.

Видео:Координаты середины отрезка. Практическая часть. 11 класс.Скачать

Координаты середины отрезка. Практическая часть. 11 класс.

Середина отрезка на координатной прямой

Исходные данные: координатная прямая O x и несовпадающие точки на ней: A и B . Этим точкам соответствуют действительные числа x A и x B . Точка C – середина отрезка A B : необходимо определить координату x C .

Как найти координаты середины треугольника

Поскольку точка C является серединой отрезка А В , верным будет являться равенство: | А С | = | С В | . Расстояние между точками определяется модулем разницы их координат, т.е.

| А С | = | С В | ⇔ x C — x A = x B — x C

Тогда возможно два равенства: x C — x A = x B — x C и x C — x A = — ( x B — x C )

Из первого равенства выведем формулу для координаты точки C : x C = x A + x B 2 (полусумма координат концов отрезка).

Из второго равенста получим: x A = x B , что невозможно, т.к. в исходных данных — несовпадающие точки. Таким образом, формула для определения координат середины отрезка A B с концами A ( x A ) и B ( x B ):

Полученная формула будет основой для определения координат середины отрезка на плоскости или в пространстве.

Видео:Уравнения стороны треугольника и медианыСкачать

Уравнения стороны треугольника и медианы

Середина отрезка на плоскости

Исходные данные: прямоугольная система координат на плоскости О x y , две произвольные несовпадающие точки с заданными координатами A x A , y A и B x B , y B . Точка C – середина отрезка A B . Необходимо определить координаты x C и y C для точки C .

Возьмем для анализа случай, когда точки A и B не совпадают и не лежат на одной координатной прямой или прямой, перпендикулярной одной из осей. A x , A y ; B x , B y и C x , C y — проекции точек A , B и C на оси координат (прямые О х и О y ).

Как найти координаты середины треугольника

Согласно построению прямые A A x , B B x , C C x параллельны; прямые также параллельны между собой. Совокупно с этим по теореме Фалеса из равенства А С = С В следуют равенства: А x С x = С x В x и А y С y = С y В y , и они в свою очередь свидетельствуют о том, что точка С x – середина отрезка А x В x , а С y – середина отрезка А y В y . И тогда, опираясь на полученную ранее формулу, получим:

x C = x A + x B 2 и y C = y A + y B 2

Этими же формулами можно воспользоваться в случае, когда точки A и B лежат на одной координатной прямой или прямой, перпендикулярной одной из осей. Проводить детальный анализ этого случая не будем, рассмотрим его лишь графически:

Как найти координаты середины треугольникаКак найти координаты середины треугольника

Резюмируя все выше сказанное, координаты середины отрезка A B на плоскости с координатами концов A ( x A , y A ) и B ( x B , y B ) определяются как:

( x A + x B 2 , y A + y B 2 )

Видео:Нахождение координаты середины отрезка.Скачать

Нахождение координаты середины отрезка.

Середина отрезка в пространстве

Исходные данные: система координат О x y z и две произвольные точки с заданными координатами A ( x A , y A , z A ) и B ( x B , y B , z B ) . Необходимо определить координаты точки C , являющейся серединой отрезка A B .

A x , A y , A z ; B x , B y , B z и C x , C y , C z — проекции всех заданных точек на оси системы координат.

Как найти координаты середины треугольника

Согласно теореме Фалеса верны равенства: A x C x = C x B x , A y C y = C y B y , A z C z = C z B z

Следовательно, точки C x , C y , C z являются серединами отрезков A x B x , A y B y , A z B z соответственно. Тогда, для определения координат середины отрезка в пространстве верны формулы:

x C = x A + x B 2 , y c = y A + y B 2 , z c = z A + Z B 2

Полученные формулы применимы также в случаях, когда точки A и B лежат на одной из координатных прямых; на прямой, перпендикулярной одной из осей; в одной координатной плоскости или плоскости, перпендикулярной одной из координатных плоскостей.

Видео:9 класс, 4 урок, Простейшие задачи в координатахСкачать

9 класс, 4 урок, Простейшие задачи в координатах

Определение координат середины отрезка через координаты радиус-векторов его концов

Формулу для нахождения координат середины отрезка также можно вывести согласно алгебраическому толкованию векторов.

Исходные данные: прямоугольная декартова система координат O x y , точки с заданными координатами A ( x A , y A ) и B ( x B , x B ) . Точка C – середина отрезка A B .

Согласно геометрическому определению действий над векторами верным будет равенство: O C → = 1 2 · O A → + O B → . Точка C в данном случае – точка пересечения диагоналей параллелограмма, построенного на основе векторов O A → и O B → , т.е. точка середины диагоналей.Координаты радиус-вектора точки равны координатам точки, тогда верны равенства: O A → = ( x A , y A ) , O B → = ( x B , y B ) . Выполним некоторые операции над векторами в координатах и получим:

O C → = 1 2 · O A → + O B → = x A + x B 2 , y A + y B 2

Следовательно, точка C имеет координаты:

x A + x B 2 , y A + y B 2

По аналогии определяется формула для нахождения координат середины отрезка в пространстве:

C ( x A + x B 2 , y A + y B 2 , z A + z B 2 )

Видео:Расстояние между двумя точками. Координаты середины отрезка.Скачать

Расстояние между двумя точками. Координаты середины отрезка.

Примеры решения задач на нахождение координат середины отрезка

Среди задач, предполагающих использование полученных выше формул, встречаются, как и те, в которых напрямую стоит вопрос рассчитать координаты середины отрезка, так и такие, что предполагают приведение заданных условий к этому вопросу: зачастую используется термин «медиана», ставится целью нахождение координат одного из концов отрезка, а также распространены задачи на симметрию, решение которых в общем также не должно вызывать затруднений после изучения настоящей темы. Рассмотрим характерные примеры.

Исходные данные: на плоскости – точки с заданными координатами А ( — 7 , 3 ) и В ( 2 , 4 ) . Необходимо найти координаты середины отрезка А В .

Решение

Обозначим середину отрезка A B точкой C . Координаты ее буду определяться как полусумма координат концов отрезка, т.е. точек A и B .

x C = x A + x B 2 = — 7 + 2 2 = — 5 2 y C = y A + y B 2 = 3 + 4 2 = 7 2

Ответ: координаты середины отрезка А В — 5 2 , 7 2 .

Исходные данные: известны координаты треугольника А В С : А ( — 1 , 0 ) , В ( 3 , 2 ) , С ( 9 , — 8 ) . Необходимо найти длину медианы А М .

Решение

  1. По условию задачи A M – медиана, а значит M является точкой середины отрезка B C . В первую очередь найдем координаты середины отрезка B C , т.е. точки M :

x M = x B + x C 2 = 3 + 9 2 = 6 y M = y B + y C 2 = 2 + ( — 8 ) 2 = — 3

  1. Поскольку теперь нам известны координаты обоих концов медианы (точки A и М ), можем воспользоваться формулой для определения расстояния между точками и посчитать длину медианы А М :

A M = ( 6 — ( — 1 ) ) 2 + ( — 3 — 0 ) 2 = 58

Ответ: 58

Исходные данные: в прямоугольной системе координат трехмерного пространства задан параллелепипед A B C D A 1 B 1 C 1 D 1 . Заданы координаты точки C 1 ( 1 , 1 , 0 ) , а также определена точка M , являющаяся серединой диагонали B D 1 и имеющая координаты M ( 4 , 2 , — 4 ) . Необходимо рассчитать координаты точки А .

Решение

Диагонали параллелепипеда имеют пересечение в одной точке, которая при этом является серединой всех диагоналей. Исходя из этого утверждения, можно иметь в виду, что известная по условиям задачи точка М является серединой отрезка А С 1 . Опираясь на формулу для нахождения координат середины отрезка в пространстве, найдем координаты точки А : x M = x A + x C 1 2 ⇒ x A = 2 · x M — x C 1 = 2 · 4 — 1 + 7 y M = y A + y C 1 2 ⇒ y A = 2 · y M — y C 1 = 2 · 2 — 1 = 3 z M = z A + z C 1 2 ⇒ z A = 2 · z M — z C 1 = 2 · ( — 4 ) — 0 = — 8

Ответ: координаты точки А ( 7 , 3 , — 8 ) .

Видео:Метод координат. Как найти медиану треугольника, если известны координаты его вершин?Скачать

Метод координат. Как найти медиану треугольника, если известны координаты его вершин?

Уравнение средней линии

Как составить уравнение средней линии треугольника по координатам его вершин? Как записать уравнение средней линии трапеции?

Для решения этих задач используем свойства средней линии треугольника и средней линии трапеции.

Найти координаты середин двух сторон и составить уравнение прямой, проходящей через две найденные точки.

1) Написать уравнение прямой, содержащей среднюю линию треугольника с вершинами в точках A(-2;-4), B(1;6), C(7;0), пересекающей стороны AB и BC в точках M и N.

М — середина отрезка AB, N — середина BC.

Как найти координаты середины треугольника

Как найти координаты середины треугольника

Как найти координаты середины треугольника

Как найти координаты середины треугольника

Как найти координаты середины треугольника

Составим уравнение прямой MN, например, в виде y=kx+b:

Как найти координаты середины треугольника

Как найти координаты середины треугольника

Как найти координаты середины треугольника

Найти координату одной из точек средней линии и составить уравнение прямой, параллельной стороне треугольника.

Как найти координаты середины треугольника

— середина отрезка AB. Составим уравнение прямой AC:

Как найти координаты середины треугольника

Как найти координаты середины треугольника

Составим уравнение прямой MN как уравнение прямой, проходящей через точку M и параллельной прямой AC.

Угловой коэффициент прямой MN равен угловому коэффициенту прямой AC:

Как найти координаты середины треугольника

то есть уравнение прямой MN ищем в виде

Как найти координаты середины треугольника

Поскольку точка M принадлежит прямой, её координаты удовлетворяют этому уравнению. Отсюда находим значение b:

Как найти координаты середины треугольника

Таким образом, уравнение прямой MN

Как найти координаты середины треугольника

Как найти координаты середины треугольника

Аналогичные рассуждения применимы и при составлении уравнения средней линии трапеции.

Написать уравнение прямой, содержащей среднюю линию трапеции с вершинами в точках A(-2;1), B(1;5), C(4;-1), D(0;-3).

Сначала следует определить основания данной трапеции.

Составим уравнения сторон AD и BC. Если эти прямые параллельны, то AD и BC — основания трапеции. Если эти прямые не параллельны, то основания трапеции — AB и CD.

Как найти координаты середины треугольника

Значит, уравнение прямой AD: y= -2k-3.
B(1;5), C(4;-1),

Как найти координаты середины треугольника

Уравнение прямой BC: y= -2k+7.

Поскольку угловые коэффициенты прямых равны:

Как найти координаты середины треугольника

то AD ∥BC, то есть AD и BC являются основаниями трапеции ABCD. Значит AB и CD — боковые стороны. Найдём координаты точек M и N — середины AB и CD соответственно.

Как найти координаты середины треугольника

Как найти координаты середины треугольника

Как найти координаты середины треугольника

Как найти координаты середины треугольника

Составим уравнение прямой MN, M(-1/2;3), N(2;-2):

Как найти координаты середины треугольника

Уравнение AD — y= -2k-3, середина AB — M(-1/2;3). Составляем уравнение прямой MN, параллельной прямой AD.

Как найти координаты середины треугольника

Значит уравнение MN ищем в виде y= -2x+b.

Так как прямая проходит через точку M, её координаты удовлетворяют уравнению прямой:

Как найти координаты середины треугольника

Следовательно, уравнение средней линии трапеции ABCD имеет вид y=-2x+2 или 2x+y-2=0.

📹 Видео

Координаты середины отрезка. Формула. Геометрия 9 класс.Скачать

Координаты середины отрезка. Формула. Геометрия 9 класс.

Найдите площадь треугольника АВС, если А(5;2;6), В(1;2;0), С(3;0;3)Скачать

Найдите площадь треугольника АВС, если А(5;2;6), В(1;2;0), С(3;0;3)

координаты центра тяжести треугольникаСкачать

координаты центра тяжести треугольника

Вычисляем угол через координаты вершинСкачать

Вычисляем угол через координаты вершин

Нахождение длины вектора через координаты. Практическая часть. 9 класс.Скачать

Нахождение длины вектора через координаты. Практическая часть. 9 класс.

№973. Даны координаты вершин треугольника ABC: А (4; 6), В (-4; 0), С (-1; -4). Напишите уравнениеСкачать

№973. Даны координаты вершин треугольника ABC: А (4; 6), В (-4; 0), С (-1; -4). Напишите уравнение

Высшая математика. 3 урок. Аналитическая геометрия. Вычисление площади треугольникаСкачать

Высшая математика. 3 урок. Аналитическая геометрия. Вычисление площади треугольника

Координаты вектора. 9 класс.Скачать

Координаты вектора. 9 класс.

Деление отрезка в данном отношенииСкачать

Деление отрезка в данном отношении

№942. Найдите медиану AM треугольника ABC, вершины которого имеют координаты: А(0; 1), В(1; -4)Скачать

№942. Найдите медиану AM треугольника ABC, вершины которого имеют координаты: А(0; 1), В(1; -4)

КООРДИНАТЫ СЕРЕДИНЫ ОТРЕЗКА Атанасян 425 стереометрияСкачать

КООРДИНАТЫ СЕРЕДИНЫ ОТРЕЗКА Атанасян 425 стереометрия

Нахождение координат вектора. Практическая часть. 9 класс.Скачать

Нахождение координат вектора. Практическая часть. 9 класс.

Вычисляем высоту через координаты вершин 1Скачать

Вычисляем высоту через координаты вершин  1
Поделиться или сохранить к себе: