В данной публикации мы рассмотрим основные свойства биссектрисы прямоугольного треугольника, проведенной из прямого и острого углов, а также разберем примеры решения задач по данной теме.
Примечание: напомним, что прямоугольным называется треугольник, в котором один из углов прямой (т.е. равен 90°), а два остальных – острые ( Содержание скрыть
- Свойства биссектрисы прямоугольного треугольника
- Свойство 1
- Свойство 2
- Примеры задач
- Биссектриса — свойства, признаки и формулы
- Что такое биссектриса в геометрии
- Биссектриса прямоугольного треугольника
- Свойства биссектрисы треугольника
- Все формулы биссектрисы в треугольнике
- Примеры решения задач
- Задача №1
- Задача №2
- Биссектрисы в прямоугольном треугольнике пересекаются в центре вписанной окружности
- Окружность, вписанная в треугольник. Основное свойство биссектрисы угла
- Существование окружности, вписанной в треугольник. Основное свойство биссектрисы угла
- Формулы для радиуса окружности, вписанной в треугольник
- Вывод формул для радиуса окружности, вписанной в треугольник
- Свойства биссектрис треугольника
- Свойства биссектрис треугольника
- 🎬 Видео
Видео:7 класс, 17 урок, Медианы, биссектрисы и высоты треугольникаСкачать
Свойства биссектрисы прямоугольного треугольника
Свойство 1
Если в прямоугольном треугольнике известны катеты, то длину биссектрисы, проведенной из прямого угла к гипотенузе, можно вычислить по формуле:
Свойство 2
Длину биссектрисы в прямоугольном треугольнике, проведенную из острого угла к противолежащему катету, можно вычислить по формуле:
- la – биссектриса к катету;
- α – острый угол, из которого проведена биссектриса.
Также можно использовать другую формулу, если известны все три стороны треугольника:
Примечания:
- Прямоугольный треугольник может быть равнобедренным, и в этом случае к нему, в т.ч., применимы свойства биссектрисы равнобедренного треугольника.
- Общие свойства биссектрисы в любом треугольнике представлены в нашей публикации – “Определение и свойства биссектрисы угла треугольника”.
Видео:Геометрия В прямоугольном треугольнике через точку пересечения биссектрисы прямого угла и гипотенузыСкачать
Примеры задач
Задача 1
Найдите длину биссектрисы, которая проведена к гипотенузе прямоугольного треугольника, если известно, что его катеты равны 21 и 28 см.
Решение
Воспользуемся формулой, приведенной в Свойстве 1, подставив в нее известные значения:
Задача 2
Катеты прямоугольного треугольника равны 9 и 12 см. Вычислите длину биссектрисы, проведенной к катету с наименьшей длиной.
Решение
Пример катеты за “a” (9 см) и “b” (12 см).
Для начала найдем гипотенузу треугольника (c), воспользовавшись теоремой Пифагора, согласно которой квадрат гипотенузы равняется сумме квадратов катетов:
c 2 = a 2 + b 2 = 9 2 + 12 2 = 225.
Следовательно, c = 15 см.
Теперь мы можем применить формулу, рассмотренную в Свойстве 2 для нахождения длины биссектрисы:
Видео:Высота, биссектриса, медиана. 7 класс.Скачать
Биссектриса — свойства, признаки и формулы
Базовым понятием и одним из наиболее интересных и полезных объектов школьной математики является биссектриса. С её помощью доказываются многие положения планиметрии, упрощается решение задач.
Известные свойства позволяют рассматривать геометрические фигуры с разных точек зрения. Появляется вариативность при выборе пути доказательств.
Становится возможным использование инструмента алгебры, например, свойство пропорции, нахождение неизвестных величин, решение алгебраических уравнений при рассмотрении геометрических вопросов.
Видео:Построение высоты в тупоугольном и прямоугольном треугольниках. 7 класс.Скачать
Что такое биссектриса в геометрии
Рассматривают луч, выходящий из вершины угла или его часть (отрезок), который делит угол пополам. Такой луч (или, соответственно, отрезок) называется биссектрисой.
Часто для треугольников определение немного сужают, говоря об отрезке, соединяющем вершину угла, делящем его пополам, с точкой на противолежащей стороне. При этом рассматривается внутренняя область фигуры.
В то же время, часто при решении задач используются прямые, делящие внешние углы на два равных.
Видео:ТОП-5 ОШИБОК в математике | Математика | TutorOnlineСкачать
Биссектриса прямоугольного треугольника
Для прямоугольного треугольника одна из биссектрис образует равные углы, величины которых хорошо просчитываются (45 градусов).
Это помогает вычислять углы при решении задач, связанных с фигурами, которые можно представить в виде прямоугольных треугольников или прямоугольников.
В тупоугольном треугольнике биссектриса делит больший угол на равные части, величина которых меньше 90 0 .
Видео:биссектриса прямоугольного треугольника #SHORTSСкачать
Свойства биссектрисы треугольника
1. Каждая точка этой линии равноудалена от сторон угла. Часто эту характеристику выбирают в качестве определения, поскольку верно и обратное утверждение для любого произвольного треугольника. Это позволяет находить и радиус вписанной окружности.
2. Все внутренние отрезки, делящие углы пополам, пересекаются в одной точке, которая является центром окружности, вписанной в фигуру, т. е. точка пересечения находится на равных расстояниях от сторон.
Данное свойство позволяет решать целый класс разнообразных задач, выводить формулы для радиусов вписанных окружностей правильных многоугольников.
Благодаря этому утверждению, легко доказывается следующее правило:
Площадь описанного многоугольника равна:
где p – полупериметр, а r – радиус вписанной окружности.
Это позволяет находить решение не только планиметрических, но и стереометрических задач.
Важную роль играют внешние биссектрисы треугольника. Вместе с внутренними они образуют прямые углы;
3. Сумма величин двух прилежащих сторон, делённая на длину противолежащей стороны, задаёт отношение частей биссектрисы (считая от вершины), полученных точкой пересечения всех трёх соответствующих линий.
Некоторые виды геометрических фигур, в силу своих особенностей, порождают особые примечательные характеристики;
4. В равнобедренном треугольнике биссектриса, проведённая к основанию, одновременно является медианой и высотой. Две другие – равны между собой.
В этом случае основание параллельно внешней биссектрисе.
Обратное положение также имеет место. Если прямая проведена параллельно основанию равнобедренного треугольника через некоторую вершину, то внешняя биссектриса при этой вершине является частью этой линии;
5. Для равностороннего многоугольника важной характеристикой считается равенство всех биссектрис;
6. У правильного треугольника все внешние биссектрисы параллельны сторонам;
7. Выделяют несколько особенностей, среди которых есть следующая теорема:
«Биссектриса треугольника делит противолежащую сторону на отрезки, пропорциональные двум другим сторонам».
Обратное утверждение («Прямая делит сторону на отрезки, пропорциональные двум другим сторонам») выражает признаки того, что рассматриваемая линия является внутренней биссектрисой;
8. Разносторонний треугольник позволяет определить взаимное расположение его высоты, медианы и биссектрисы, проведённых из одной точки. В частности, медиана и высота располагаются по разные стороны от третьей линии.
Видео:Свойство биссектрисы треугольника с доказательствомСкачать
Все формулы биссектрисы в треугольнике
В зависимости от исходных данных, длина биссектрисы, проведённой к стороне C, lc, равна:
Видео:Найдите биссектрису прямоугольного треугольника с катетами 3 и 5 ★ Как решать?Скачать
Примеры решения задач
Задача №1
В ΔABC ∠C = 90°, проведена биссектриса острого угла. Отрезок, соединяющий её основание с точкой пересечения медиан, перпендикулярен катету. Найти углы заданной фигуры.
Пусть ∠ACB = 90°, AD – биссектриса, BE – медиана, O – точка пересечения медиан, OD⊥BC.
Тогда OE : OB = 1 : 2по свойству медиан.
Так как OD⊥BC, то ODIIOC, следовательно, ΔBOD ∼ ΔBEC по второму признаку подобия, поэтому, по свойству подобных фигур, CD : DB = 1 : 2.
Это означает, что CA : AB = 1 : 2.
Так как катет равен половине гипотенузы, то ∠ABC = 30°, откуда ∠CAB = 60°.
Задача №2
Диагональ параллелограмма делит его острый угол пополам. Доказать, что этот параллелограмм является ромбом.
Так как ABCD – параллелограмм, то ∠DAC = ∠ACB, как накрест лежащие при параллельных прямых AD, BC и секущей AC.
По условию, ∠DAC = ∠ACB = ∠BAC, поэтому ΔACB равнобедренный, то есть AB = BC, следовательно, ABCD – ромб.
Видео:№411. В прямоугольном треугольнике проведена биссектриса прямого угла. Через точкуСкачать
Биссектрисы в прямоугольном треугольнике пересекаются в центре вписанной окружности
Видео:Геометрия 7 класс (Урок№12 - Медианы треугольника. Биссектрисы треугольника. Высоты треугольника.)Скачать
Окружность, вписанная в треугольник. Основное свойство биссектрисы угла
Существование окружности, вписанной в треугольник. Основное свойство биссектрисы угла |
Формулы для радиуса окружности, вписанной в треугольник |
Вывод формул для радиуса окружности, вписанной в треугольник |
Видео:Подобие треугольников. Признаки подобия треугольников (часть 1) | МатематикаСкачать
Существование окружности, вписанной в треугольник. Основное свойство биссектрисы угла
Определение 1 . Биссектрисой угла называют луч, делящий угол на две равные части.
Теорема 1 (Основное свойство биссектрисы угла) . Каждая точка биссектрисы угла находится на одном и том же расстоянии от сторон угла (рис.1).
Доказательство . Рассмотрим произвольную точку D , лежащую на биссектрисе угла BAC , и опустим из точки D перпендикуляры DE и DF на стороны угла (рис.1). Прямоугольные треугольники ADF и ADE равны, поскольку у них равны острые углы DAF и DAE , а гипотенуза AD – общая. Следовательно,
что и требовалось доказать.
Теорема 2 (обратная теорема к теореме 1) . Если некоторая точка находится на одном и том же расстоянии от сторон угла, то она лежит на биссектрисе угла (рис.2).
Доказательство . Рассмотрим произвольную точку D , лежащую внутри угла BAC и находящуюся на одном и том же расстоянии от сторон угла. Опустим из точки D перпендикуляры DE и DF на стороны угла (рис.2). Прямоугольные треугольники ADF и ADE равны, поскольку у них равны катеты DF и DE , а гипотенуза AD – общая. Следовательно,
что и требовалось доказать.
Определение 2 . Окружность называют окружностью, вписанной в угол , если она касается касается сторон этого угла.
Теорема 3 . Если окружность вписана в угол, то расстояния от вершины угла до точек касания окружности со сторонами угла равны.
Доказательство . Пусть точка D – центр окружности, вписанной в угол BAC , а точки E и F – точки касания окружности со сторонами угла (рис.3).
Прямоугольные треугольники ADF и ADE равны, поскольку у них равны катеты DF и DE (как радиусы окружности радиусы окружности ), а гипотенуза AD – общая. Следовательно
что и требовалось доказать.
Замечание . Теорему 3 можно сформулировать и по-другому: отрезки касательных касательных , проведенных к окружности из одной точки, равны.
Определение 3 . Биссектрисой треугольника называют отрезок, являющийся частью биссектрисы угла треугольника, и соединяющий вершину треугольника с точкой на противоположной стороне.
Теорема 4 . В любом треугольнике все три биссектрисы пересекаются в одной точке.
Доказательство . Рассмотрим две биссектрисы, проведённые из вершин A и C треугольника ABC , и обозначим точку их пересечения буквой O (рис. 4).
Опустим из точки O перпендикуляры OD , OE и OF на стороны треугольника. Поскольку точка O лежит на биссектрисе угла BAC , то в силу теоремы 1 справедливо равенство:
Поскольку точка O лежит на биссектрисе угла ACB , то в силу теоремы 1 справедливо равенство:
Следовательно, справедливо равенство:
откуда с помощью теоремы 2 заключаем, что точка O лежит на биссектрисе угла ABC . Таким образом, все три биссектрисы треугольника проходят через одну и ту же точку, что и требовалось доказать
Определение 4 . Окружностью, вписанной в треугольник , называют окружность, которая касается всех сторон треугольника (рис.5). В этом случае треугольник называют треугольником, описанным около окружности .
Следствие . В любой треугольник можно вписать окружность, причем только одну. Центром вписанной в треугольник окружности является точка, в которой пересекаются все биссектрисы треугольника.
Видео:ГЕОМЕТРИЯ 7 класс. Медиана прямоугольного треугольника. Свойство. Доказательство для 7 класса.Скачать
Формулы для радиуса окружности, вписанной в треугольник
Формулы, позволяющие найти радиус вписанной в треугольник окружности , удобно представить в виде следующей таблицы.
Фигура | Рисунок | Формула | Обозначения | |||||||||||||||||||
Произвольный треугольник | ||||||||||||||||||||||
Равнобедренный треугольник | ||||||||||||||||||||||
Равносторонний треугольник | ||||||||||||||||||||||
Прямоугольный треугольник |
Произвольный треугольник | ||
Равнобедренный треугольник | ||
Равносторонний треугольник | ||
Прямоугольный треугольник | ||
Произвольный треугольник |
где
a, b, c – стороны треугольника,
S –площадь,
r – радиус вписанной окружности,
p – полупериметр
.
где
a, b, c – стороны треугольника,
r – радиус вписанной окружности,
p – полупериметр
.
где
a – сторона равностороннего треугольника,
r – радиус вписанной окружности
Видео:Пересечение биссектрис треугольника в одной точке, Геометрия 7 классСкачать
Вывод формул для радиуса окружности, вписанной в треугольник
Теорема 5 . Для произвольного треугольника справедливо равенство
где a, b, c – стороны треугольника, r – радиус вписанной окружности, – полупериметр (рис. 6).
с помощью формулы Герона получаем:
что и требовалось.
Теорема 6 . Для равнобедренного треугольника справедливо равенство
где a – боковая сторона равнобедренного треугольника, b – основание, r – радиус вписанной окружности (рис. 7).
то, в случае равнобедренного треугольника, когда
что и требовалось.
Теорема 7 . Для равностороннего треугольника справедливо равенство
где a – сторона равностороннего треугольника, r – радиус вписанной окружности (рис. 8).
то, в случае равностороннего треугольника, когда
что и требовалось.
Замечание . Рекомендуем читателю вывести в качестве упражнения формулу для радиуса окружности, вписанной в равносторонний треугольник, непосредственно, т.е. без использования общих формул для радиусов окружностей, вписанных в произвольный треугольник или в равнобедренный треугольник.
Теорема 8 . Для прямоугольного треугольника справедливо равенство
Доказательство . Рассмотрим рисунок 9.
Поскольку четырёхугольник CDOF является прямоугольником прямоугольником , у которого соседние стороны DO и OF равны, то этот прямоугольник – квадрат квадрат . Следовательно,
В силу теоремы 3 справедливы равенства
Следовательно, принимая также во внимание теорему Пифагора, получаем
что и требовалось.
Замечание . Рекомендуем читателю вывести в качестве упражнения формулу для радиуса окружности, вписанной в прямоугольный треугольник, с помощью общей формулы для радиуса окружности, вписанной в произвольный треугольник.
Видео:Формула для биссектрисы треугольникаСкачать
Свойства биссектрис треугольника
Свойство 1
Биссектрисы треугольника пересекаются в одной точке — центре вписанной в треугольник окружности.
Свойство 2
Если CD — биссектриса угла C ? ABC, то
Свойство 3
Точка пересечения биссектрис делит биссектрису угла С в отношении a + b c , считая от вершины:
Свойство 4
Биссектриса угла C вычисляется по формулам:
Видео:Как доказать, что биссектрисы треугольника пересекаются в одной точке?Скачать
Свойства биссектрис треугольника
Три биссектрисы треугольника пересекаются в одной точке, являющейся центром окружности, вписанной в треугольник
Биссектриса угла треугольника — это луч, который соединяет вершину треугольника с противоположной стороной, при этом разделяя угол на две равные части.
Биссектриса угла треугольника – это множество точек, равноудаленных от его сторон. Это значит, что от любой точки, лежащей на биссектрисе угла, расстояния до сторон угла равны.
Пусть точка О лежит на биссектрисе угла АВС. Расстояние от точки до прямой – это длина перпендикуляра, опущенного из точки на прямую, поэтому треугольники ВОС и ВОА на рисунке – прямоугольные.
Здесь отрезки ОА и ОС – расстояния от точки О до сторон ВА и ВС угла АВС.
Прямоугольные треугольники ВОС и ВОА равны по острому углу и гипотенузе. Значит, ОА = ОС и любая точка, лежащая на биссектрисе угла, равноудалена от его сторон.
Пусть биссектрисы углов А и В треугольника пересекаются в точке Р. Тогда точка Р равноудалена от сторон АВ и АС, поскольку лежит на биссектрисе угла А, а также от сторон ВС и ВА, поскольку лежит на биссектрисе угла В. А это значит, что точка Р равноудалена и от прямых АС и ВС, то есть лежит на биссектрисе угла C.
Задача ЕГЭ по теме «Биссектрисы углов треугольника»
В треугольнике ABC угол A равен , угол B равен . AD, BE и CF — биссектрисы, пересекающиеся в точке O. Найдите угол AOF. Ответ дайте в градусах.
Найдем третий угол треугольника ABC – угол C. Он равен .
Заметим, что в треугольнике AOC острые углы равны половинкам углов CAB и ACB, то есть и .
Угол AOF – внешний угол треугольника AOC. Он равен сумме внутренних углов, не смежных с ним, то есть .
🎬 Видео
Высота в прямоугольном треугольнике. 8 класс.Скачать
Построение биссектрисы в треугольникеСкачать
Все про прямоугольный треугольник. Решаем задачи | Математика | TutorOnlineСкачать
Свойства прямоугольного треугольника. 7 класс.Скачать
Определение натуральной величины треугольника АВС методом замены плоскостей проекцииСкачать