- Второй признак равенства треугольников
- Третий признак равенства треугольников
- Задачи
- Задачи на третий признак равенства треугольников
- 3 равенство треугольников задачи
- I уровень сложности (легкий)
- III уровень сложности (сложный)
- Самостоятельная работа № 6 Указания к решению и ОТВЕТЫ
- С-6. I уровень сложности (ответы)
- С-6. II уровень сложности (ответы)
- С-6. III уровень сложности (ответы)
- 🌟 Видео
Второй признак равенства треугольников
Отсюда вытекает следующее теоремма:
Третий признак равенства треугольников
Видео:Признаки равенства треугольников. 7 класс.Скачать
Задачи
Задача 1
Дано:
ABC — равнобедренный треугольник.
АМ и BN биссектрисы угла.
Доказать: AM = BN.
Доказательство:
Треугольники AMB и BNA — равны (по второму признаку — угол-сторона-угол) потому что:
1. ∠CAB = ∠CBA
2. AB – в обеих треугольниках.
3. ∠MAB = ∠NBA = 1 /2 ∠CAB.
Отрезки AM и BN являются соответствующими в этих равных треугольниках, и, следовательно, AM = BN.
Задача 2
Дано:
ABC — треугольник,
CM — медиана,
AA1 ⊥ CM и BB1 ⊥ CM.
Доказать: АА1 = ВВ1.
Доказательство:
1. ∠BB1M = ∠AA1M = 90°,
2. ∠AMA1 = ∠BMB1 как вертикальные,
3. AM = BM.
Следовательно △AA1M = △BB1M (по второму признаку).
Тогда AA1 = BB1 как соответствующие стороны в этих треугольниках.
Задача 3
Докажите, что перпендикуляры, проведённые из любой точки биссектрисы угла по отношению к его сторонам, вырезают на них равные отрезки.
Доказательство:
Давайте предположим, что ∠AOB точка M — неопределённая точка на биссектрисе OL.(fig.40)
Возьмём, что MP ⊥ OA и MQ ⊥ OB. Для того, чтобы доказать, что OP = OQ, достаточно доказать что △OPM = △OQM.
Но △OPM = △OQM(по второму признаку), потому что
1. OM — общая сторона,
2. ∠QOM = ∠POM (OL есть биссектриса),
3. ∠OQM = ∠OPM = 90°, откуда OP = OQ
Задача 4
Докажите, что если в треугольнике высота и биссектриса, проведенные из одной вершины, равны, то треугольник равнобедренный.
Доказательство:
Обозначим, что △ABC высота и биссектриса, проведённые из вершины C, совпадают (рис. 41).
Для того, чтобы доказать, что AC = BC, т.е. △ABC является равнобедренным, достаточно доказать, что △APC = △ BPC.
Но △APC = △BPC (по второму признаку) потому что
1. ∠ACP = ∠BCP (CP — биссектриса)
2. ∠ACP = ∠CPB = 90° (CP — высота)
3. CP — общая сторона
Следователвно AC = BC ⇒ ABC — равнобедренный
Задача 5
Давайте посмотрим на треугольники △ABC и △A1B1C1
1. AB = A1B1
2. BC = B1C1
3. ABC = A1B1C1
Тогда, △ABC = △A1B1C1 — равны по первому признаку.
Видео:Признаки равенства треугольников | теорема пифагора | Математика | TutorOnlineСкачать
Задачи на третий признак равенства треугольников
Рассмотрим задачи на третий признак равенства треугольников.
Дано:
Рассмотрим треугольники AFB и BKA.
1) AF=BK (по условию).
2) AK=BF (по условию).
3) AB — общая сторона.
Следовательно, ∆AFB=∆BKA по третьему признаку равенства треугольников (по трем сторонам).
Что и требовалось доказать.
Дано:
Равенство углов следует из равенства треугольников. Значит, чтобы доказать равенство углов A и C, надо доказать равенство треугольников с углами A и C. Треугольников пока нет, поэтому необходимо дополнительное построение.
Проведем отрезок BD и рассмотрим треугольники ABD и CDB.
(Важно правильно назвать треугольники!
Равные углы должны стоять в названии треугольников на одинаковых местах).
Для удобства выделим треугольники разными цветами.
∆ABD и ∆CDB имеют по две пары равных сторон: AB=CD, AD=BC.
Сторона BD — общая. Можем применить третий признак равенства треугольников.
Перейдем к записи доказательства.
Проведем отрезок BD.
Рассмотрим ∆ABD и ∆CDB.
1) AB=CD (по условию).
2) AD=BC (по условию).
3) BD — общая сторона.
Следовательно, ∆ABD = ∆CDB (по трем сторонам).
Из равенства треугольников следует равенство соответствующих углов. Значит, ∠A=∠C.
Видео:Признаки равенства треугольников. Практическая часть. 7 класс.Скачать
3 равенство треугольников задачи
Основная дидактическая цель урока: совершенствовать навыки решения задач на применение второго признака равенства треугольников. Перед решением задач необходимо повторить конспекты: «Треугольник. Равенство треугольников», «ЗАДАЧИ на Признаки равенства треугольников».
I уровень сложности (легкий)
Вариант 1 (уровень 1)
- Дано: АВ = СD, ВС = DA, ∠C = 40° (рис. 2.157).
Доказать: ΔABD = ΔCDB. Найти: ∠A. - На боковых сторонах равнобедренного треугольника АВС отложены равные отрезки ВМ и BN. BD – медиана треугольника. Докажите, что MD = ND.
- В треугольниках АВС и А1В1С1 АВ = А1В1, ∠A = ∠A1, ∠B = ∠B1. Точки D и D1 лежат соответственно на сторонах АС и А1С1, причем CD = C1D1. Докажите, что ΔBDC = ΔB1D1C1. Сравните отрезки BD и B1D1.
Вариант 2 (уровень 1)
- Дано: AD = АВ, CD = CB, D= 120° (рис. 2.158).
Доказать: ΔDAC = ΔBAC. Найти: ∠B. - На боковых сторонах равнобедренного треугольника АВС отложены равные отрезки ВМ и BN. BD – высота треугольника. Докажите, что MD = ND.
- В треугольниках АВС и А1В1С1 АВ = A1B1, АС = A1C1, ∠A = ∠A1. Точки D и D1 лежат соответственно на сторонах АС и A1C1, ∠DBC = ∠D1B1C1. Докажите, что ΔBDC = ΔB1D1C1. Сравните углы ВDC и B1C1D1.
II уровень сложности (средний)
Вариант 1 (уровень 2)
- Дано: АВ = СD, ВС = AD (рис. 2.159). Доказать: ∠A = ∠C.
- На боковых сторонах равнобедренного треугольника АВС с основанием АС отложены равные отрезки AM и CN. BD, медиана ΔAВС, пересекает отрезок MN в точке О. Докажите, что ВО – медиана ΔMBN.
- В треугольниках АВС и А1В1С1 АВ = A1B1, ∠А = ∠A1, ∠B = ∠B1. На сторонах ВС и В1С1 отмечены точки D и D1 так, что ∠CAD = ∠C1A1D1. Докажите, что: а) ΔADC = ΔA1D1C1; б) ΔADB = ΔA1D1B1.
Вариант 2 (уровень 2)
- Дано: АВ = AD, ВС = DC (рис. 2.162). Доказать: ∠B = ∠D.
- Дан равнобедренный ΔАВС с основанием АС и высотой BD. На лучах ВА и ВС вне треугольника АВС отложены равные отрезки AM и CN. Луч BD пересекает отрезок MN в точке О. Доказать, что ВО – высота ΔMBN.
- В треугольниках DEC и D1E1C1 DE = D1E1, ∠D = ∠D1, ∠E = ∠E1. На сторонах DE и D1E1 отмечены точки P и P1 так, что ∠DCP = ∠D1C1P1. Докажите, что: a) ΔDCP = ΔD1C1P1; б) ΔCPE = ΔC1P1E1.
III уровень сложности (сложный)
Вариант 1 (уровень 3)
- Дано: АВ = CD, АС = BD (рис. 2.165). Доказать: ∠CAD = ∠BDA.
- ΔMNP – равнобедренный с основанием МР, точка К – середина отрезка МР, ME = PF. Докажите, что луч KN – биссектриса угла EKF (рис. 2.166).
- В равнобедренном треугольнике АВС точка D – середина основания АС. На лучах АВ и СВ вне треугольника АВС отмечены точки М и N соответственно – так, что ВМ = BN. Докажите, что ΔBDM = ΔBDN.
Вариант 2 (уровень 3)
- Дано: АВ = CD, АС = BD (рис. 2.168). Доказать: ∠ACB = ∠DBC.
- ΔMNP – равнобедренный с основанием МР, точка К – середина отрезка МР, ∠MKE = ∠PKF. Докажите, что ΔNЕК = ΔNFK (рис. 2.169).
- В равнобедренном треугольнике АВС точка D – середина основания АС. На лучах АВ и СВ вне АВС отмечены точки М и N соответственно, так, что ∠BDM =∠BDN. Докажите, что ΔBDM = ΔBDN.
Самостоятельная работа № 6
Указания к решению и ОТВЕТЫ
С-6. I уровень сложности (ответы)
Геометрия 7 Атанасян Самостоятельная 6
С-6. II уровень сложности (ответы)
Задания и Ответы на Вариант 1 (уровень 2)
№ 1. Дано: АВ = СD, ВС = AD (рис. 2.159). Доказать: ∠A = ∠C.
Докажите самостоятельно.
№ 2. На боковых сторонах равнобедренного треугольника АВС с основанием АС отложены равные отрезки AM и CN. BD, медиана ΔAВС, пересекает отрезок MN в точке О. Докажите, что ВО – медиана ΔMBN.
Доказательство:
1) ΔАВС – равнобедренный с основанием АС, и медиана BD является его биссектрисой (рис. 2.160).
2) ΔMBN – равнобедренный с основанием MN, так как МВ = BN (МВ = ВА– МА; BN = ВС – МС, ВА = ВС, МА = NC). BD – биссектриса ΔMBN, и по свойству биссектрисы равнобедренного треугольника она является медианой, т. е. ВО – медиана ΔMBN.
Доказательство:
а) ΔАВС = ΔА1В1С1 по стороне и прилежащим к ней углам (АВ = A1B1, ∠A = ∠A1, ∠B = ∠B1 по условию задачи) (рис. 2.161). ΔADC = ΔA1D1C1 по стороне и прилежащим к ней углам (АС = А1С1, ∠C = ∠C1 из равенства треугольников АВС и А1В1С1, ∠CAD = ∠C1A1D1 по условию задачи).
б) Так как ΔADC = ΔA1D1C1, то DC = D1C1, следовательно, равны отрезки BD и B1D1 (ВС = В1С1 из равенства треугольников АВС и А1В1С1). Так как АВ = А1В1, ∠B = ∠B1 из равенства треугольников АВС и А1В1С1 и BD = В1D1, то ΔABD = ΔA1B1D1 по двум сторонам и углу между ними.
Задания и Ответы на Вариант 2 (уровень 2)
№ 1. Дано: АВ = AD, ВС = DC (рис. 2.162). Доказать: ∠B = ∠D.
Докажите самостоятельно.
№ 2. Дан равнобедренный ΔАВС с основанием АС и высотой BD. На лучах ВА и ВС вне треугольника АВС отложены равные отрезки AM и CN. Луч BD пересекает отрезок MN в точке О. Доказать, что ВО – высота ΔMBN.
Доказательство:
1) ΔАВС – равнобедренный с основанием АС, и высота BD, проведенная из его вершины к основанию, является и его биссектрисой, т. е. ВО – биссектриса ∠ABC и ∠MBN тоже (рис. 2.163).
2) ΔMBN – равнобедренный с основанием MN (ВМ = ВА + AM, BN = ВС + CN; так как ВА = ВС и АМ = CN, то ВМ = BN). В равнобедренном ΔMBN биссектриса ВО, проведенная из его вершины к основанию, является и его высотой.
Доказательство:
а) ΔDEC = ΔD1E1C1 по стороне и прилежащим к ней углам (DE = D1E1, ∠D = ∠D1, ∠E = ∠E1) (рис. 2.164).
Так как ΔDEC = ΔD1E1C1, то DC = D1C1. Тогда ΔDCP= ΔD1C1P1 по стороне и прилежащим к ней углам (DC = D1C1, ∠D = ∠D1, ∠PCD= ∠P1C1D1).
б) Так как ΔDEC = ΔD1E1C1, тo EC = E1C1, ∠ECD = ∠E1C1D1.
Так как ∠ECD = ∠E1C1D1, ∠PCD = ∠P1C1D1, a ∠ECP = ∠ECD – ∠DCP, ∠E1C1P1 = ∠E1C1D1 – ∠D1C1P1, ∠ECP = ∠E1C1P1.
Так как ЕС = E1C1 ∠E = ∠E1, ∠ECP = ∠E1C1P1, то ΔPEC = ΔP1E1C1 по стороне и прилежащим к ней углам.
Геометрия 7 Атанасян Самостоятельная 6.
С-6. III уровень сложности (ответы)
Задания и Ответы на Вариант 1 (уровень 3)
№ 1. Дано: АВ = CD, АС = BD (рис. 2.165). Доказать: ∠CAD = ∠BDA.
Докажите самостоятельно.
№ 2. ΔMNP – равнобедренный с основанием МР, точка К – середина отрезка МР, ME = PF. Докажите, что луч KN – биссектриса угла EKF (рис. 2.166).
Доказательство: ΔМЕК = ΔPFK по двум сторонам и углу между ними (ME = FP, МК = КР по условию задачи, ∠M = ∠P как углы при основании равнобедренного ΔMNP). Следовательно, КЕ= KF.
ΔKEN = ΔKFN по трем сторонам (КЕ = KF; KN – общая сторона; NE = NF, так как NE = MN – ME, NF = PN – PF, a MN = PN, ME = PF). Следовательно, ∠EKN = ∠FKN.
Так как ∠EKN = ∠FKN, то KN – биссектриса угла ∠EKF.
№ 3. В равнобедренном треугольнике АВС точка D – середина основания АС. На лучах АВ и СВ вне треугольника АВС отмечены точки М и N соответственно – так, что ВМ = BN. Докажите, что ΔBDM = ΔBDN.
Доказательство: Так как D – середина основания равнобедренного ΔАВС с основанием АС, то BD – медиана, а значит, и биссектриса ΔАВС. Следовательно, ∠ABD = ∠CBD (рис. 2.167).
∠NBA = ∠CBM как вертикальные.
∠NBD = ∠NBA + ∠ABD, a ∠MBD = ∠MBC + ∠CBD. Так как ∠ABD = ∠CBD, ∠MBC = ∠NBA, то ∠NBD = ∠MBD.
ΔNBD = ΔMBD по двум сторонам и углу между ними (NB = МВ; BD – общая сторона; ∠NBD = ∠MBD).
Задания и Ответы на Вариант 2 (уровень 3)
№ 1. Дано: АВ = CD, АС = BD (рис. 2.168). Доказать: ∠ACB = ∠DBC.
Докажите самостоятельно.
№ 2. ΔMNP – равнобедренный с основанием МР, точка К – середина отрезка МР, ∠MKE = ∠PKF. Докажите, что ΔNЕК = ΔNFK (рис. 2.169).
Доказательство: ΔМЕК = ΔPFK по стороне и прилежащим к ней углам (МК = КР, так как К – середина МР; ∠MKE = ∠PKF по условию задачи; ∠M = ∠P как углы при основании равнобедренного ΔMNP).
Так как ΔМЕК = ΔPFK, то ME = PF, следовательно, EN = FN (EN = MN – ME, FN = PN – PF, a MN = FN как боковые стороны равнобедренного треугольника).
Так как ΔМЕК = ΔPFK, то КЕ = KF. ΔNEK = ΔNFK по трем сторонам (NK – общая сторона, NE = EF, ЕК = ЕК).
№ 3. В равнобедренном треугольнике АВС точка D – середина основания АС. На лучах АВ и СВ вне АВС отмечены точки М и N соответственно, так, что ∠BDM =∠BDN. Докажите, что ΔBDM = ΔBDN.
Доказательство: Так как D – середина основания АС равнобедренного ΔАВС, то BD – медиана и биссектриса ΔАВС. Следовательно, ∠ABD = ∠CBD (рис. 2.170).
∠NBA = ∠CBM как вертикальные. Поэтому ∠NBD = ∠MBD (∠NBD = ∠NBA + ∠ABD, ∠MBD = ∠MBC + ∠CBD, a ∠NBA = ∠CBM, ∠ABD = ∠CBD).
ΔBDM = ΔBDN по стороне и прилежащим к ней углам (BD – общая сторона, ∠NBD = ∠MBD, ∠BDM = ∠BDN).
Вы смотрели: Геометрия 7 класс (УМК Атанасян и др. — Просвещение). Урок 21. Решение задач на применение третьего признака равенства треугольников. Самостоятельная работа № 6 с ответами и решениями (3 уровня сложности по 2 варианта в каждом). Геометрия 7 Атанасян Самостоятельная 6. Ориентировано на работу с базовым учебником: «Атанасян Л.С., Бутузов В.Ф. и др. Геометрия. 7—9 классы. Учебник для общеобразовательных организаций. М.: Просвещение».
🌟 Видео
Первый признак равенства треугольников. 7 класс.Скачать
Второй признак равенства треугольников. 7 класс.Скачать
Геометрия 7 класс (Урок№10 - Первый признак равенства треугольников.)Скачать
Геометрия 7 класс (Урок№15 - Решение задач на признаки равенства треугольников.)Скачать
7 класс, 15 урок, Первый признак равенства треугольниковСкачать
Геометрия. 7 класс. Теоремы. Т3. Первый признак равенства треугольников.Скачать
Третий признак равенства треугольников | Теорема + доказательствоСкачать
Треугольники. Практическая часть - решение задачи. 7 класс.Скачать
7 класс, 20 урок, Третий признак равенства треугольниковСкачать
Геометрия 7 класс (Урок№14 - Второй и третий признаки равенства треугольников.)Скачать
7 класс, 19 урок, Второй признак равенства треугольниковСкачать
Задачи. Второй признак равенства треугольников. По рисункам. Доказать.Скачать
7 класс Атанасян. Вся геометрия за 100 минут. Треугольник, окружность, задачи на построениеСкачать
Третий признак равенства треугольников (доказательство) - геометрия 7 классСкачать
Геометрия.Задачи на второй и третий признаки равенства треугольниковСкачать
первый признак равенства треугольников. Задачи по готовым чертежам, рисункам. 7 классСкачать
Признаки равенства треугольников. Решение задач. Геометрия, 7 классСкачать